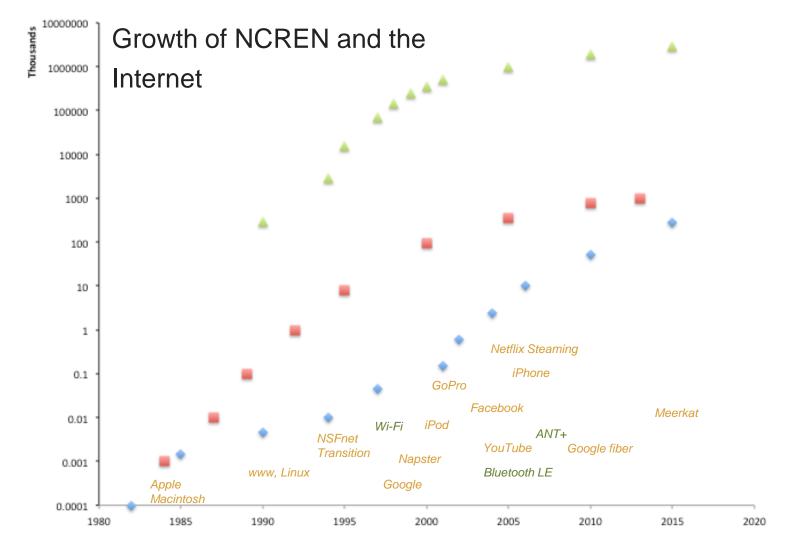
The future is here, it's just not evenly distributed - William Gibson

Mark Johnson, MCNC Broadband Communities Summit, 2015

ΙοΤ

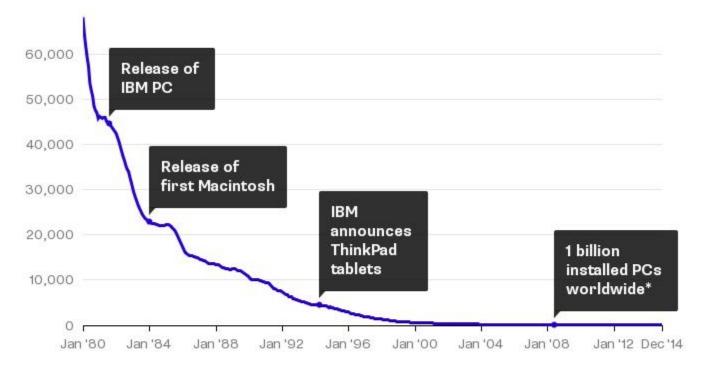
- What are these "things" we're talking about?
- Some other trends in play
- The future is here: an IoT existence proof
- What could/should be here: personal medical devices
- opportunities, challenges, trends
 - o security, standards, business models

Internet of "Things"


- A "thing" is a device that senses, analyzes, or acts on the physical world.
- **Sensors** are just measuring some quantity and reporting that measurement
- <u>Analyzing</u> involves doing some kind of computation on measurements and other data
- Acting is causing something to happen in the physical world

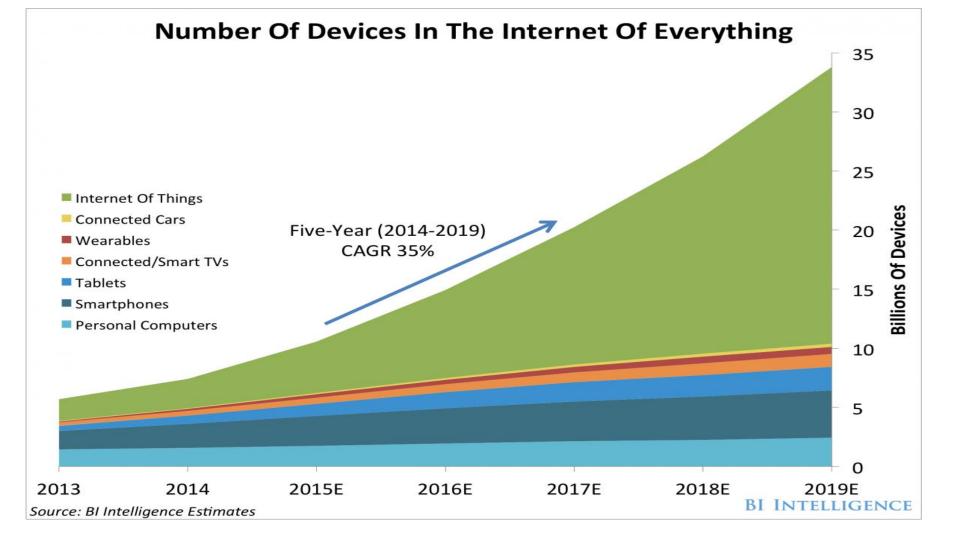
When we talk about the IoT we also often mean these things are communicating among themselves. Humans may or may not be in the analytical process.

72



The Price of PCs

Personal computers are now 99.9% cheaper today than in 1980



bloomberg business

Source: U.S. Bureau of Economic Analysis, *Gartner

Bloomberg

Metcalfe's Law:

The value of a telecommunications network is proportional to the square of the number of connected users of the system (n^2).

Boston Marathon 2014: 35,671 instrumented runners

passive - no power required

RFID: now can store some info as well as report a serial number data rate 40-640kbps

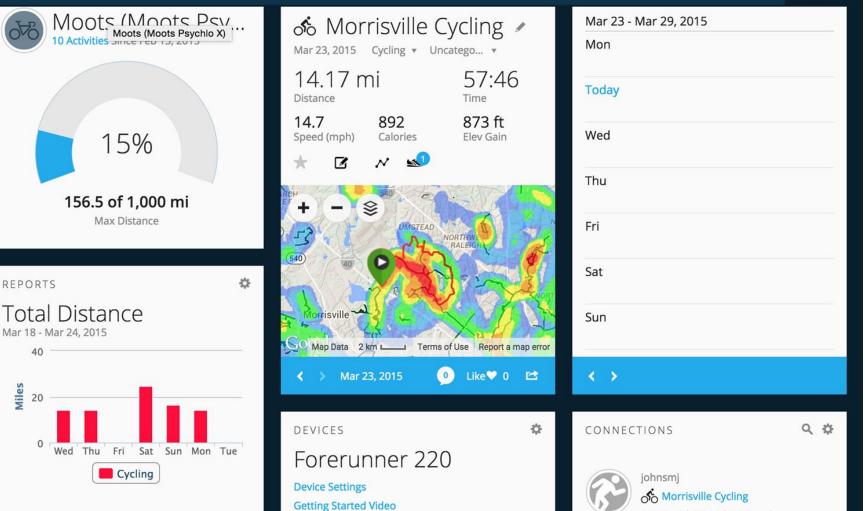
Cycling: mobile, connected, social, etc

- constellation of sensors delivering realtime data to a mobile display unit.
- heart rate, power, cadence, speed, temperature, location, elevation
- sensors and display units may be mixed and matched thanks to a common wireless protocol standard (Ant+) designed for collecting nearby sensor data
- event data is stored in the cloud where standard data formats allow analysis by a variety of software
- A social community is created facilitating sharing and competition among community members
- analysis can occur on a personal (what's my performance and how might I improve it?), community (how do I compare to others?), and global (what are the trends, effects of these activities)?

also:

live tracking of location to remote apps notifications of incoming phone calls integration of GoPro video and sensor data

Device ecosystem enabled by standards



GARMIN sonal Best 1:12

Sports


TC climb

Your Best Time: 2:15 on Sep 6, 2014 Crossed By: 360 People | Activities: 1790 | Edited: Jan 10, 2015 Like · Comments (0)

Summary			R M	Leadert
+-	Google 🔻	Map 👻	*	Men & V
				All Cycli
	Server	~	~	YOU
	Saure Carling			1 🕅
\sim				2 💦
				3
Distance	Avg Grade	Elev Gain	Elev Loss	4
0.36 ^{mi}	5.8 *	0 ft	0 ft	5
and the second	Segment Type: Hill Climb		iace: avel	6

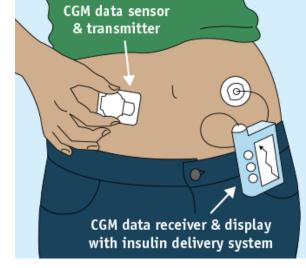
Men & Women 🗘	All Weig	ht Group	s 🛊	All Age	Groups	\$			
All Cycling Classes \$									
YOUR RANK: 31	TIME	SPEED (MPH)	HR (BPM)	POWER (W)	CADENCE (RPM)	WIND	DATE		
1 🎢 jeremymorgan	1:24.5	15.29	172		92	12 mph 🖈	November 6, 201		
2 KenMetzger	1:45.4	12.25				0 mph 🕹	August 21, 2014		
3 revnine	1:45.9	12.20	184	329	69	0 mph 🕹	June 10, 2014		
4 ChristopherS	1:46.3	12.14	170		97	5 mph ピ	October 30, 2014		
5 🚰 Ehoff	1:48.2	11.94	177		84	4 mph 🎵	May 10, 2014		

personal medical devices

Virtually no integration across devices

- Barriers
 - FDA approval processes
 - business models of device vendors, insurance companies, and medical providers
 - concern over quality of data, security, possible side effects
- o **Result**
 - rate of innovation is slow
 - little to no attention to security since the systems are proprietary and closed

devices


Continuous glucose monitor (CGM) sensor + specialized

display

Bone conduction hearing aids

sensor + special device for integrating other inputs

Glucose pumps actuator + specialized control device

Opportunities

Personal instrumentation (fitness, medicine)

Home instrumentation and control

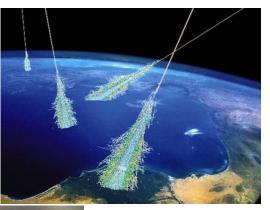
HVAC, appliances, security

Community instrumentation and control

Smart grid, utility management (water, waste collection, lighting, etc)

Business instrumentation and control

Sensors for field moisture, GPS controlled planting, maintenance,


harvesting,

MCNC onnecting North Carolina's Future Today

Market tracking and analysis

trends

More elaborate and capable sensors e.g. cravfis cosmic ray

Less expensive and more

Challenges

Lack of relevant standards and APIs

Business models work against IoT

implementation

Potential security risks

Lack of quality connectivity, especially in

rural aroac

Questions?

Mark Johnson - CTO, MCNC

iPhone sensors and radios

Sensors:

Proximity Ambient light Accelerometer (2) Magnetometer (compass) Gyroscopic sensor CMOS image sensor (the camera) Radios Wi-Fi Bluetooth (not LE ... yet) GPS NFC (Apple Pay) LTE & 3G cell

